
PRIMES IN ARITHMETIC PROGRESSIONS: FIXED

MODULUS

COURSE NOTES, 2015

In this section, we survey the theory of primes in arithmetic progressions
p = a mod q, p ≤ x, with the modulus q being fixed and x→∞.

1. Elementary cases of Dirichlet’s theorem

Dirichlet’s theorem says that if gcd(a, q) = 1 then there are infinitely
many primes in the progression p = a mod q. The proof is the subject of
a separate course, though some in the class have seen it (possibly in Fq[t]).
Instead, we explain some elementary examples.

1.1. p = 3 mod 4. Assume there are only finitely many primes p = 3 mod 4.
Enumerate them as p1 = 3, p2 = 7, . . . , pM . Let

N := 4p1 · · · · pM − 1

Then N > 1, 2 - N , and pj - N , hence all prime factors of N are congru-
ent to 1 mod 4: N = q1 . . . qr, qj = 1 mod 4. But then N = 1 mod 4,
contradiction.

1.2. p = 1 mod 4. Assume that there are only finitely many primes p =
1 mod 4. Enumerate them as p1 = 5, p2 = 13, . . . , pM . Let

N = (2p1 . . . pM )2 + 1

Then N > 1, 2 - N , pj - N and hence all prime factors of N are = 3 mod 4.
Since N > 1. there is at least one such prime p | N . Then

(2p1 . . . pM )2 = −1 mod p

But since p = 3 mod 4, we know that −1 6= � mod p hence we have a
contradiction.

1.3. p = 1 mod q, q > 2 prime. We take an odd prime q and show there
are infinitely many primes p = 1 mod q. Otherwise, list them as p1, . . . , pM
(possibly there are none).

Let

Φq(x) = 1 + x+ · · ·+ xq−1 =
xq − 1

x− 1
be the cyclotomic polynomial. Let

A := q ·
M∏
j=1

pj
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N := Φq(A) = 1 +A+ · · ·+Aq−1 =
Aq − 1

A− 1

Then N > 1, q - N , pj - N .
Since N > 1, there is some prime p dividing N . Then

Aq = 1 mod p

and hence either A = 1 mod p or ordp(A) = q. In the latter case, this
implies that q = ordp(A) | p− 1 so that p = 1 mod q, contradiction.

We rule out A = 1 mod p, since otherwise we find

N = 1 +A+ · · ·+Aq−1 = 1 + . . . 1 = q mod p

and since p | N , also N = 0 mod p, hence q = 0 mod p. Since both p and q
are prime, this forces p = q. But we saw q - N , contradiction.

2. The PNT for arithmetic progressions

Let gcd(a, q) = 1, and set

π(x; q, a) := #{p ≤ x : p = a mod q}

θ(x; q, a) :=
∑
p≤x

p=a mod q

log p

(the sum over primes),

ψ(x; q, a) :=
∑
n≤x

n=a mod q

Λ(n)

The prime number theorem for arithmetic progressions states that if
gcd(a, q) = 1, then as x→∞ (q fixed),

π(x; q, a) =
1

φ(q)
Li(x) +O(xe−c

√
log x)

ψ(x; q, a) =
x

φ(q)
+O(xe−c

√
log x)

Applying summation by parts gives

(1)
∑
p≤x

p=a mod q

log p

p
=

1

φ(q)
log x+O(1)

Exercise: prove this.
Recall that we take q fixed, and x → ∞. Later on we will come to the

more interesting and important case of varying modulus.
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2.1. Bounding prime values of n2 + 1. It is an old conjecture that there
are infinitely many primes of the form n2 + 1. In this section we shall give
an upper bound for their number

Theorem 2.1. The number of n ≤ x so that n2 + 1 is prime is � x/ log x.

We wish to use the Selberg upper bound sieve, with the sequence

A = {n2 + 1 : n ≤ x}

If a prime p divides an integer of the form n2 + 1, then p 6= 3 mod 4. Hence
we take as the set of primes

P = {p : p 6= 3 mod 4}

and set

P (z) =
∏
p≤z

p

If d | P (z), then as we have already seen elsewhere,

#Ad := #{n ≤ x : d - n2 + 1} =
ρ(d)

d
x+O(ρ(d))

where ρ(d) = #{c mod d : c2 + 1 = 0 mod d}.
Setting

S(A,P, z) := #{a ∈ A : gcd(a, P (z)) = 1}
then clearly #S(A,P, z) gives an upper bound for the primes p > z of the
form n2 + 1.

By the Selberg upper bound sieve,

#S(A,P, z) ≤ x

S(z)
+R(z)

where

R(z) =
∑

d1,d2≤z
d|P (z)

ρ([d1, d2])

and

S(z) =
∑
d≤z
d|P (z)

1

f ∗ µ(d)

where for d | P (z), we set f(d) = d/ρ(d).

Theorem 2.2. Let ρ(p) be as above. Suppose in addition that∑
p≤z

ω(p) log p

p
= κ log z +O(1),

for some κ ≥ 0. Then

S(z) � (log z)κ.
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In our case, κ = 1: Indeed, if p = 1 mod 4 then ρ(p) = 2 while ρ(p) = 0
for p = 3 mod 4. Hence∑

p≤z

ρ(p) log p

p
=

∑
p≤z

p=1 mod 4

2
log p

p
+O(1)

and since ∑
p≤z

p=a mod q

log p

p
=

1

φ(q)
log z +O(1)

whenever gcd(a, q) = 1, takeing q = 4, a = 1 gives∑
p≤z

p=1 mod 4

log p

p
=

1

2
log z +O(1)

Thus we find that S(z) � log z.
As for the remainder term R(z), we use for d1, d2 | P (z), so are squarefree,

that
ρ([d1, d2]) =

∏
p|[d1,d2]

ρ(p) ≤ ρ(d1) · ρ(d2)

and hence

R(z) ≤
∑

d1,d2≤z
d1,d2|P (z)

ρ(d1)ρ(d2) =
( ∑

d≤z
d|P (z)

ρ(d)
)2

Now for d squarefree,

ρ(d) =
∏
p|d

ρ(p) ≤
∏
p|d

2 = τ(d)

(τ is the divisor function), and therefgore∑
d≤z
d|P (z)

ρ(d) ≤
∑
d≤z

τ(d) ∼ z log z

Thus we find
R(z)� z2(log z)2

Altogether we obtain

S(A,P, z)� x

log z
+ z2(log z)2 � x

log x

on taking say z = x1/3.


